US009104447B2

a2 United States Patent

Fletcher et al.

US 9,104,447 B2
Aug. 11, 2015

(10) Patent No.:
(45) Date of Patent:

(54) RESTORING A PREVIOUS VERSION OF A (56) References Cited
VIRTUAL MACHINE IMAGE
U.S. PATENT DOCUMENTS
(71) Applicant: International Business Machines
Corporation, Armonk, NY (US) 8,176,558 B2* 5/2012 Kuwamura 726/24
’ ’ 2006/0225065 Al 10/2006 Chandhok et al.
R R 2007/0192459 Al 8/2007 Horimoto et al. 709/223
(72) Inventors: James C. Fletcher, APeX., NC (US); 2008/0147956 Al P T — 711/6
Robert T. Uthe, Morrisville, NC (US) 2008/0263658 Al* 10/2008 Michael etal. . 726/22
2009/0138541 Al 5/2009 Wingetal. 709/201
(73) Assignee: International Business Machines 2010/0162039 Al 6/2010 Goroffetal.cccceeenen 714/6
Corporation, Armonk, NY (US) 2011/0113206 Al 5/2011 Heim
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is exlt)ertded ordadjusted under 35 CA 2055193 51992 . HO4L 12/56
US.C. 154(b) by 318 days. P 2009080692 4/2009 GOGF 11/20
Jp 2009080705 4/2009 GO6F 11/20
(21) Appl. No.: 13/692,707
OTHER PUBLICATIONS
(22) Filed: Dec. 3,2012
Hou et al., “HydraVM: Low-Cost, Transparent High Availability for
(65) Prior Publication Data Virtual Machines,” Hewlett-Packard Development Co., Feb. 2011, 13
pages.
US 2014/0157263 Al Jun. 5, 2014 “Virtual Machine Backup Guide,” VMWare Inc., 2006, 74 pages.
(51) Int.CL (Continued)
GO6F 9/455 (2006.01)
GO6F 11/14 (2006.01) Primary Examiner — Qing Wu
GOG6F 1107 (2006.01) (74) Attorney, Agent, or Firm — VanlLeeuwen &
HO4L 29/06 (2006.01) VanLeeuwen; Jeffrey S. LaBaw
GO6F 21/56 (2013.01)
GO6F 11/34 (2006.01) 67 ABSTRACT
(52) US.CL An approach is provided to apply a virtual machine (VM)
CPC ..o GO6F 9/455 (2013.01); GOGF 11/0712 image to a computer system. In the approach, implemented
(2013.01); GO6F 11/1402 (2013.01); GOGF by an information handling system, a detection is made that a
11/1458 (2013.01); GO6F 11/1469 (2013.01); current VM image executing on the computer system is expe-
GOG6F 11/1484 (2013.01); HO4L 63/14 riencing a problem. In response, prior VM images are ana-
(2013.01); GO6F 11/1438 (2013.01); GO6F lyzed, with each of the prior VM images being an image that
11/3409 (2013.01); GO6F 11/3476 (2013.01); was previously executed on the computer system. Based on
GO6F 21/56 (2013.01); GO6F 2201/83 the analysis, one of the prior VM images is selected and the
(2013.01) selected image is used to replace the current VM image on the
(58) Field of Classification Search computer system.

None
See application file for complete search history.

18 Claims, 6 Drawing Sheets

US 9,104,447 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“Method of Saving and Restoring the State of a Virtual Machine
Guest Controller Software in Case of Failure/Crash or User Request,”
Siemens AG, IP.com No. IPCOM000205582D, Mar. 31, 2011, 5

pages.

Anonymous, “Methods and Approach to Minimize Downtime of
Server Virtual Machines Due to Failure of Disk in the Storage
Device,” IP.com No. IPCOM000196623D, Jun. 9, 2010, 5 pages.
“Veeam Backup & Replication for VMware,” Veeam Software, 2009,
2 pages.

International Search Report and Written Opinion for PCT application
PCT/EP2013/066583 (filed Aug. 7, 2013, Applicant—International
Business Machines Corporation), mailed Nov. 18, 2013, 12 pages.

* cited by examiner

U.S. Patent Aug. 11, 2015 Sheet 1 of 6 US 9,104,447 B2
information Handling System
F I G- 1 Processor(s) /100
10 ’
System Memor
y 120 y ' N2 "\xiProoessorlnterface Bus
Memory North Bridge ;| PCl :
Memory | Express ggggg}f:r Display
Controller ; 125 130
Memory L s I —
- usB Storage Device 145
119 _ ' : ‘
DMI UsB
Bus Devices
142 :
144
VVVVVVVVVVVVVVVVVVVVVVVVVVVV | LAN R B
 ExpressCard _PCI Express 14ane o
s UsB
USB Cor;;{rgller
80211 Wireless _PCI Express Tane
175 162 —. Audio line-in
""""""""""""""""""""" 172 — HD ; . and optical digital
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Audic audio in port
Interfacg Circuitry 164
/ 160 Optical digital
South Bridge | 198 — | output and
1fO Device and headphone jack
,,,,,,,,, - Aot UAT Disk Controller | internat ‘\, 1! Intemal
Internal A or’ ATA bus 135 Microphone\\ 166 - Speakers
Hard Drive | " Lo1e8
\ 185) Ethernet
Lo A8 PCI Express 1-lane Controller
Serial ATA bus 170
T ~192
188 / LPCBus TPM
““““““““““ 180 195
“Legacy” BOOt
0 LPC Bus LhCBe ROM
Devices 196
198

U.S. Patent Aug. 11, 2015 Sheet 2 of 6 US 9,104,447 B2

U.S. Patent Aug. 11, 2015 Sheet 3 of 6 US 9,104,447 B2

Virtual

grsesemasvsassssssiacsssiieines > Maching A fremveeremmmsmerensceaeinaieaiinns :

Virtual

Rt R # Maching B remeemeessncmmeeesnrenacnne v

Virtual P

P premeemeeeeesnesaees > Machinge C presemeesmmeseemsscnnees cod

s . P

. ® : M

H L4 H :

Virtual

Pd preeeeneeeasenens > Machine n fremmemmmevmneseaeen P

; : 340 ’ P
Rt s S e L L L M e B B
| vVYYVYY |
! Change Historical : ‘
] Management | o Pattern \/thm:rtigcs |
| System | Matching 470 9 !
| 350 390 “““ |
! A 7y ‘
| |
| |
| h 4 !
| |
| Available Associated |
| Images Resource]
360 Metrics |
: 380 |
| VM Version Management Computer System |
300 |

| ol 454

U.S. Patent

Available Images

O

Current Image
401

Resource
Metrics
402

I

{lmage -1)
403

Associated
Resource
Metrics
404

Jl

{Image -2)
405

Associated
Resource
Metrics
406

Jl

{Image -n)
407

)

Associated
Resource
Metrics
408

(

Current Image },,

Aug. 11, 2015

fmae mmms smme mams amam tmme mama mead

Sheet 4 of 6

US 9,104,447 B2

Run system using current image |
400 -

v

Collect resource metrics |4
410

v

Record historically
{e.g., snapshot, efc.
420

L 4
Problem with current VYM?
425

I
Yes

\ 4

Select next most recent image

and historically saved resource

metrics associated with image
430

v

Compare problem signature of
current installed image with
historical problem signature of
selected image
435

Same
problem signature?
440

available images?

No
v

Select “best” image
{See Figure 6)
490

System
310-340

Installed
Image
{Running)
415

{Selected

Image)
470

Yes

L 4

Historical metrics
{See Figure 5)
450

Other problems
with selected image?
455

No
\ 4

Revert fo selected image

{install on system)
460

’
’
’
»
:
»
»
I

U.S. Patent Aug. 11, 2015 Sheet 5 of 6 US 9,104,447 B2

Historical metrics
500

Select first/next set of Resource Associated
» Metrics for selected image Resource Metrics
510 of Currently
Selected Image
v 520

Analyze selected set of Resource
Metrics for selected image
530

Analysis reveals other problem
with selected image?
540 —l

Store virtual image identifier
and other problem data
revealed by analysis

No _5—5_0—
>
\ 4
ore sets of Resource Metrics ; ;
; ! Available images
mYes—<gvallable for g%acted xmage?> “othier” problems
T -
No

!

Other problem(s) \
detected with selected image? No

580
Yes
A 4
Return Retum
(Selected Image has known problems) (Selected Image has no known problems)
590 535

FIG. 5

U.S. Patent

Aug. 11, 2015

Select “best’ image
600
2
Retrigve the problems detected with

the VM that is currently running and
initialize as “best” available image

Sheet 6 of 6

K3

560

Available images
with “other” problems

Y

i Select firstinext problem with

Select first/next available image that
exgen‘enced problems different than
the problem found in current VM

K2

Clear storage area
630

v

US 9,104,447 B2

Selected

Yes

FIG. 6

selected availtable image and store | > image’s :
l > in storage area :
ﬁ}f@_ proé)ieéms |
v ; s
More problems detected :
with selected image? :
650 : §
l = i
No
v v
Compare current VM's problems {e-----esaveseneanat B
with selected image’s problems Best
R T —— available }--
T image H
62 i
Selected image better than 620 :
—No~ current “best” available image? A
670 : :
I :
Yes :
Replace "best’ available image with
selecledimage ~ prreeemeereeeeeeeeesenssenned
675 i
g ,
" More images to analyze? _ No :
I !

Revert to best available image i
{if not the current VM) -2

Return
695

US 9,104,447 B2

1
RESTORING A PREVIOUS VERSION OF A
VIRTUAL MACHINE IMAGE

TECHNICAL FIELD

The present disclosure relates to an approach that restores
a virtual machine image based on previously gathered
resource metrics.

BACKGROUND OF THE INVENTION

Once it is recognized that a virtual image (VM) is behaving
poorly, through the use of a range of current art techniques,
and itis determined that a fallback to a prior version is needed,
there are no clear means to determine which prior image
should be used. Simply rolling back to the most recent prior
version may not resolve the issue, consequently the customer
may have to iteratively revert to other prior versions until a
good, stable image is found. There is currently no clear
method to determine to which prior release to revert to beyond
“random choice”. Current systems typically revert to the
immediate prior version of the VM, doing so without any
level of evaluation of what was driving the undesirable behav-
ior in the current version. Change management systems exist
today to indicate when and why a change was made but these
systems are consulted by humans instead of providing an
automated rationale for determining the rollback version.
Thus, these prior art approaches are prone to human error, and
require human-driven analysis time to determine an appro-
priate image.

SUMMARY

An approach is provided to apply a virtual machine (VM)
image to a computer system. In the approach, implemented
by an information handling system, a detection is made that a
current VM image executing on the computer system is expe-
riencing a problem. In response, prior VM images are ana-
lyzed, with each of the prior VM images being an image that
was previously executed on the computer system. Based on
the analysis, one of the prior VM images is selected and the
selected image is used to replace the current VM image on the
computer system. In one embodiment, a current problem
signature related to the problem detected in the current VM
image is created and this problem signature is compared with
historic problem signatures that correspond with the prior
VM images. In a further embodiment, any of the prior VM
images that exhibit the same problem signature detected in
the current VM image are rejected. Those problem signatures
that do not match the current problem signature are qualita-
tively analyzed to identify the “best” prior VM image that can
be used on the computer system. In some cases, a historic
problem signature may indicate no problems with the corre-
sponding prior VM image. Problem signatures corresponding
to prior VM images can be generated by analyzing resource
metrics that were gathered while the prior VM images were
running on the computer system. In one environment, one
computer system is used to manage the virtual machines
running on a number of computer systems with the managing
computer system performing the analysis of problem data and
the selection of the prior VM image that should be applied on
the various computer systems.

The foregoing is a summary and thus contains, by neces-
sity, simplifications, generalizations, and omissions of detail;
consequently, those skilled in the art will appreciate that the
summary is illustrative only and is not intended to be in any
way limiting. Other aspects, inventive features, and advan-

10

15

20

25

30

40

45

50

55

60

65

2

tages of the present invention, as defined solely by the claims,
will become apparent in the non-limiting detailed description
set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features, and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings, wherein:

FIG. 1 is a block diagram of a data processing system in
which the methods described herein can be implemented;

FIG. 2 provides an extension of the information handling
system environment shown in FIG. 1 to illustrate that the
methods described herein can be performed on a wide variety
of information handling systems which operate in a net-
worked environment;

FIG. 3 is a component diagram showing a virtual machine
(VM) version management system;

FIG. 4 is a flowchart showing the steps taken by the VM
version management system;

FIG. 5 is a depiction of a flowchart showing the logic used
in the analysis of historical metrics used to select a VM image;
and

FIG. 6 is a depiction of a flowchart showing the logic used
in the selection of the “best” virtual machine for a particular
computing environment.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-

US 9,104,447 B2

3

netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer, server, or cluster of servers. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
vider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

FIG. 1 illustrates information handling system 100, which
is a simplified example of a computer system capable of
performing the computing operations described herein. Infor-
mation handling system 100 includes one or more processors
110 coupled to processor interface bus 112. Processor inter-
face bus 112 connects processors 110 to Northbridge 115,
which is also known as the Memory Controller Hub (MCH).

10

30

40

45

60

4

Northbridge 115 connects to system memory 120 and pro-
vides a means for processor(s) 110 to access the system
memory. Graphics controller 125 also connects to North-
bridge 115. In one embodiment, PCI Express bus 118 con-
nects Northbridge 115 to graphics controller 125. Graphics
controller 125 connects to display device 130, such as a
computer monitor.

Northbridge 115 and Southbridge 135 connect to each
other using bus 119. In one embodiment, the bus is a Direct
Media Interface (DMI) bus that transfers data at high speeds
in each direction between Northbridge 115 and Southbridge
135. In another embodiment, a Peripheral Component Inter-
connect (PCI) bus connects the Northbridge and the South-
bridge. Southbridge 135, also known as the /O Controller
Hub (ICH) is a chip that generally implements capabilities
that operate at slower speeds than the capabilities provided by
the Northbridge. Southbridge 135 typically provides various
busses used to connect various components. These busses
include, for example, PCI and PCI Express busses, an ISA
bus, a System Management Bus (SMBus or SMB), and/or a
Low Pin Count (LPC) bus. The LPC bus often connects
low-bandwidth devices, such as boot ROM 196 and “legacy”
1/O devices (using a “super I/O” chip). The “legacy” 1/O
devices (198) can include, for example, serial and parallel
ports, keyboard, mouse, and/or a floppy disk controller. The
LPC bus also connects Southbridge 135 to Trusted Platform
Module (TPM) 195. Other components often included in
Southbridge 135 include a Direct Memory Access (DMA)
controller, a Programmable Interrupt Controller (PIC), and a
storage device controller, which connects Southbridge 135 to
nonvolatile storage device 185, such as a hard disk drive,
using bus 184.

ExpressCard 155 is a slot that connects hot-pluggable
devices to the information handling system. ExpressCard 155
supports both PCI Express and USB connectivity as it con-
nects to Southbridge 135 using both the Universal Serial Bus
(USB) the PCI Express bus. Southbridge 135 includes USB
Controller 140 that provides USB connectivity to devices that
connect to the USB. These devices include webcam (camera)
150, infrared (IR) receiver 148, keyboard and trackpad 144,
and Bluetooth device 146, which provides for wireless per-
sonal area networks (PANs). USB Controller 140 also pro-
vides USB connectivity to other miscellaneous USB con-
nected devices 142, such as a mouse, removable nonvolatile
storage device 145, modems, network cards, ISDN connec-
tors, fax, printers, USB hubs, and many other types of USB
connected devices. While removable nonvolatile storage
device 145 is shown as a USB-connected device, removable
nonvolatile storage device 145 could be connected using a
different interface, such as a Firewire interface, etcetera.

Wireless Local Area Network (LAN) device 175 connects
to Southbridge 135 via the PCI or PCI Express bus 172. LAN
device 175 typically implements one of the IEEE .802.11
standards of over-the-air modulation techniques that all use
the same protocol to wireless communicate between infor-
mation handling system 100 and another computer system or
device. Optical storage device 190 connects to Southbridge
135 using Serial ATA (SATA) bus 188. Serial ATA adapters
and devices communicate over a high-speed serial link. The
Serial ATA bus also connects Southbridge 135 to other forms
of storage devices, such as hard disk drives. Audio circuitry
160, such as a sound card, connects to Southbridge 135 via
bus 158. Audio circuitry 160 also provides functionality such
as audio line-in and optical digital audio in port 162, optical
digital output and headphone jack 164, internal speakers 166,
and internal microphone 168. Ethernet controller 170 con-
nects to Southbridge 135 using a bus, such as the PCI or PCI

US 9,104,447 B2

5

Express bus. Ethernet controller 170 connects information
handling system 100 to a computer network, such as a L.ocal
Area Network (LAN), the Internet, and other public and
private computer networks.

While FIG. 1 shows one information handling system, an
information handling system may take many forms. For
example, an information handling system may take the form
of'a desktop, server, portable, laptop, notebook, or other form
factor computer or data processing system. In addition, an
information handling system may take other form factors
such as a personal digital assistant (PDA), a gaming device,
ATM machine, a portable telephone device, a communication
device or other devices that include a processor and memory.

The Trusted Platform Module (TPM 195) shown in FIG. 1
and described herein to provide security functions is but one
example of a hardware security module (HSM). Therefore,
the TPM described and claimed herein includes any type of
HSM including, but not limited to, hardware security devices
that conform to the Trusted Computing Groups (TCG) stan-
dard, and entitled “Trusted Platform Module (TPM) Specifi-
cation Version 1.2 The TPM is a hardware security sub-
system that may be incorporated into any number of
information handling systems, such as those outlined in
FIG. 2.

FIG. 2 provides an extension of the information handling
system environment shown in FIG. 1 to illustrate that the
methods described herein can be performed on a wide variety
of information handling systems that operate in a networked
environment. Types of information handling systems range
from small handheld devices, such as handheld computer/
mobile telephone 210 to large mainframe systems, such as
mainframe computer 270. Examples of handheld computer
210 include personal digital assistants (PDAs), personal
entertainment devices, such as MP3 players, portable televi-
sions, and compact disc players. Other examples of informa-
tion handling systems include pen, or tablet, computer 220,
laptop, or notebook, computer 230, workstation 240, personal
computer system 250, and server 260. Other types of infor-
mation handling systems that are not individually shown in
FIG. 2 are represented by information handling system 280.
As shown, the various information handling systems can be
networked together using computer network 200. Types of
computer network that can be used to interconnect the various
information handling systems include Local Area Networks
(LANs), Wireless Local Area Networks (WLANS), the Inter-
net, the Public Switched Telephone Network (PSTN), other
wireless networks, and any other network topology that can
be used to interconnect the information handling systems.
Many of the information handling systems include nonvola-
tile data stores, such as hard drives and/or nonvolatile
memory. Some of the information handling systems shown in
FIG. 2 depicts separate nonvolatile data stores (server 260
utilizes nonvolatile data store 265, mainframe computer 270
utilizes nonvolatile data store 275, and information handling
system 280 utilizes nonvolatile data store 285). The nonvola-
tile data store can be a component that is external to the
various information handling systems or can be internal to
one of the information handling systems. In addition, remov-
able nonvolatile storage device 145 can be shared among two
or more information handling systems using various tech-
niques, such as connecting the removable nonvolatile storage
device 145 to a USB port or other connector of the informa-
tion handling systems.

FIGS. 3-6 depict an approach that can be executed on an
information handling system and computer network as shown
in FIGS. 1-2. While change management systems have infor-
mation on when and why a change occurred, the current

35

40

45

6

systems do not identify suitable prior virtual machines so the
process of reverting to a prior release is at best a best guess,
human driven process. The approach provided herein couples
a change management system with an automated historical
pattern matching system for known prior performance of a
virtual machine on a computer system. In this manner, a prior
release of the application/virtual image that did not demon-
strate the failing pattern is identified and applied to the com-
puter system. The process described herein detects the failing
pattern and leverages change history data regarding perfor-
mance of the virtual machine in order to determine the prior
release of the virtual machine that best reduces the failing
pattern. The system archives and associates performance and
event data with a specified virtual image to identify the “best”
virtual machine image to apply to the computer system. In
addition, the process can be repeated in the event the pattern
had not previously occurred but did occur when the reversion
to the prior VM image was applied.

FIG. 3 is a component diagram showing a virtual machine
(VM) version management system. VM version management
computer system 300 is a computer system that maintains
change management data and resource metric data in order to
manage the VM image that is currently running on the various
managed computer systems. In the example shown, VM ver-
sion management computer system 300 is managing the vir-
tual machines currently applied to a number of computer
systems (VM A (310), VM B (320), VM C (330) through VM
n (340)).

Components utilized by VM version management system
300 include change management system 350, VM resource
metrics gathering system 370, and historical pattern matching
system 390. Change management system 350 is used to keep
track of the VMs currently applied by the various computer
systems as well as metadata regarding the installations (e.g.,
date at which the current VM was applied, previous VMs
applied at the computer systems and corresponding dates,
etc.). VM resource metrics gathering system 370 is used to
periodically gather resource metrics (e.g., availability,
response time, channel capacity, latency, completion time,
service time, bandwidth, throughput, relative efficiency, scal-
ability, performance per watt, compression ratio, instruction
path length and speed up, etc.). The resource metrics are
stored in resource metrics data store 380. Historical pattern
matching process 390 analyzes resource metrics from data
store 380 for available VM images stored in data store 360. In
this manner, the process can identify whether a problem that
is currently hampering a computer system was also a problem
for a prior VM image based on whether the resource metrics
of the prior VM image match, or are similar to, the resource
metrics currently exhibited by the currently installed VM
image. In addition, historical pattern matching process 390
can identify whether prior VM images from data store 360
exhibited different problems by analyzing the historical
resource metrics that were gathered while the prior VM
images were running on the computer system. In this manner,
the historical pattern matching system can identify a prior
VM image that did not exhibit problems or, if problems were
exhibited, are better than the problem currently being exhib-
ited by the currently installed VM image. When an appropri-
ate (“best”) prior VM image is identified, the historical pat-
tern matching process informs change management process
350 which takes care of applying the selected prior VM image
onto the computer system and updating metadata regarding
the VM images accordingly.

FIG. 4 is a flowchart showing the steps taken by the VM
version management system. At step 400, a computer system
is executing a current VM image. While the current VM

US 9,104,447 B2

7

image (415) is executing on a computer system (systems 310
through 340), at various times resource metrics (e.g., avail-
ability, response time, channel capacity, latency, completion
time, service time, bandwidth, throughput, relative efficiency,
scalability, performance per watt, compression ratio, instruc-
tion path length and speed up, etc.) are collected, at step 410,
and recorded at step 420 into current VM resource metrics
data store 402. Available VM images each have resource
metric data associated with them. Current image 401 is the
VM image that is currently running on the computer system.
Resource metrics pertaining to the current image are stored in
current VM image resource metrics data store 402. Likewise,
prior VM images that have been executed on the computer
system also have resource metrics that pertain to these VM
images that were collected and stored while the prior VM
images were executing on the computer system. VM image-1
(403) is the VM image that most recently was running on the
computer system prior to the current VM image being applied
and the resource metrics that were collected and stored while
VM image-1 (403) was running are stored in resource metrics
data store 404. Likewise, VM image-2 (405) is the VM image
that was running on the computer system just prior to VM
image-1 being applied. The resource metrics that were col-
lected and stored while VM image-2 (405) was running are
stored in resource metrics data store 406. Any number of prior
VM images can be utilized, as denoted by VM image-n (407)
with resource metrics data store 408 pertaining to VM
image-n.

A monitor, such as VM version management computer
system 300, is used to detect whether a problem is being
exhibited by the VM that is currently being executed by the
computer system. A determination is made (e.g., by the moni-
tor) as to whether the current VM image (415) is experiencing
aproblem (decision 425). The decision can be based onone or
more of the resource metrics being above or below a particu-
lar threshold for a given amount of time, etc. If no problem is
being experienced (or has yet been detected), then decision
425 branches to the “no” branch which loops back to continue
executing the VM image and continue collecting resource
metrics. The system continues to collect and record resource
metrics corresponding to the VM image that is currently
running. When a problem with the currently running VM
image is detected, decision 425 branches to the “yes” branch
for further processing that analyzes prior VM images and
determines which VM image should be applied to the com-
puter system.

At step 430, the most recent prior VM image and its his-
torically saved resource metrics (e.g., image-1 (403) and
resource metrics (404)) are selected. In the embodiment
shown, prior VM images are selected from most recently used
to oldest, however other approaches could be used with prior
VM images selected based on another criteria. At step 435,
the problem signature of the current installed VM image is
created (if not yet created) and compared to the historical
problem signature of the selected image. Again, if the
resource metric data does not include problem signature(s) of
the prior VM images, then the problem signature is generated
based on the selected resource metrics. A determination is
made as to whether the same problem signature exists in both
the current VM image as well as the selected prior VM image
(decision 440). The process is attempting to identify prior VM
images that do not exhibit the same problem that is being
experienced with the currently installed VM image. So, if the
same problem signature does not exist in the selected prior
VM image, decision 440 branches to the “no” branch for
further processing to ascertain if the selected prior VM image
should be applied to the computer system.

10

15

20

25

30

35

40

45

50

55

60

65

8

A determination is made as to whether the process is con-
figured to check the selected prior VM image’s historical
resource metric data for other problem signatures that may
have been exhibited by the selected prior VM image when it
was installed (applied) to the computer system (decision
445). If the process is configured to identify the first prior VM
image that does not exhibit the problem currently being expe-
rienced by the currently installed VM image, then decision
445 branches to the “no” branch whereupon, at step 460, the
selected prior VM image is applied to the computer system
(replacing the currently installed VM image). On the other
hand, if the process is configured to check for other problem
signatures, then decision 445 branches to the “yes” branch for
further analysis.

At predefined process 450, historical metrics pertaining to
the selected prior VM image (e.g., resource metrics data store
404) are analyzed in order to identify any other problem
signatures that are evident in the selected VM image’s
resource metric data (see FIG. 5 and corresponding text for
further processing details regarding the analysis of historical
resource metrics). A determination is made as to whether
other problem signatures were found by the analysis of the
selected prior VM image’s historical resource metrics (deci-
sion 455). If other problems were found in the selected prior
VM image’s historical resource metrics, decision 455
branches to the “yes” branch whereupon a determination is
made as to whether there are additional prior VM images that
can be selected and analyzed (decision 480). On the other
hand, if the analysis reveals that the selected prior VM
image’s resource metrics do not reveal a problem, then deci-
sion 455 branches to the “no” branch whereupon, at step 460,
the selected prior VM image is applied to the computer sys-
tem (replacing the currently installed VM image).

Returning to decision 480, if there are additional prior VM
images to process, then decision 480 branches to the “yes”
branch which loops back to select and process the next prior
VM image to determine if there is a prior VM image that does
not exhibit problems. This looping continues until there are
no more prior VM images to process, at which point decision
480 branches to the “no” branch whereupon, at predefined
process 490, the “best” prior VM image is selected based on
the analysis that was performed on their respective historical
resource metric data (see FIG. 6 and corresponding text for
further processing details).

FIG. 5 is a depiction of a flowchart showing the logic used
in the analysis of historical metrics used to selectaVM image.
Processing commences at 500 when the routine is called by
the main processing shown in FIG. 4 (see predefined process
450 in FIG. 4). At step 510, the process selects the first set of
resource metrics corresponding to the currently selected prior
VM image (shown as data store 520 in FIG. 5 and shown as
data stores 404, 406, and 408 in FIG. 4). At step 520, the
selected set of resource metrics is analyzed to identify any
problem signatures that may be shown by the resource met-
rics. For example, resource metrics availability, response
time, channel capacity, latency, completion time, service
time, bandwidth, throughput, relative efficiency, scalability,
performance per watt, compression ratio, instruction path
length and speed up, etc. and patterns may include when one
or more of these metrics crosses a particular threshold.

A determination is made as to whether the analysis
revealed another problem with the selected image based on
the selected set of resource metrics (decision 540). If the
analysis revealed another problem with the selected prior VM
image, then decision 540 branches to the “yes” branch where-
upon, at step 550, the selected prior VM image identifier is
stored along with the identified problem signature that was

US 9,104,447 B2

9

revealed by the analysis. The VM image identifier and prob-
lem signature data are retained in data store 560 for future
analysis (if needed). On the other hand, if the analysis of the
selected set of resource metrics did not reveal a problem
(problem signature), then decision 540 branches to the “no”
branch bypassing step 550.

A determination is made as to whether there are more sets
of resource metrics available for analysis for the selected
prior VM image (decision 570). If there are additional sets of
resource metrics to analyze, then decision 570 branches to the
“yes” branch which loops back to select and process the next
set of resource metrics as described above. This looping con-
tinues until all sets of resource metrics associated with the
selected prior VM image have been selected and analyzed, at
which point decision 570 branches to the “no” branch for
further processing.

A determination is made as to whether the analysis of the
resource metrics detected any other problems (problem sig-
natures) associated with the selected VM image (decision
580). If the analysis of the resource metrics revealed one or
more other problems with the selected prior VM image, then
decision 580 branches to the “yes” branch whereupon pro-
cessing returns to the calling routine at 590 (see FIG. 4) with
a return code indicating that problems were identified with
the selected prior VM image (in which case the calling routine
will keep analyzing prior VM images for problem signatures
until a suitable image is identified). On the other hand, if the
analysis of the resource metrics did not reveal any other
problems with the selected prior VM image, then decision
580 branches to the “yes” branch whereupon processing
returns to the calling routine at 595 (see FIG. 4) with a return
code indicating that no problems were identified with the
selected prior VM image (the selected prior VM image will
then be applied to the computer system).

FIG. 6 is a depiction of a flowchart showing the logic used
in the selection of the “best” virtual machine (VM) for a
particular computing environment. The routine shown in
FIG. 6 is called from FIG. 4 (predefined process 490) when
the main routine is unable to identify a prior VM image
because each of the prior VM images have one or more
problem signatures associated with them. The routine shown
in FIG. 6 selects the “best” prior VM image that will be
applied to the computer system.

Processing commences at 600 whereupon, at step 610, the
problems (problem signature data) associated with the cur-
rently running VM image are retrieved and stored in memory
area 620 to initialize the “best” available VM image to the
image that is currently running. Subsequent processing, as
described below, will compare prior VM image problem data
to the “best” available VM image and, when better, will
replace the current “best” available image.

At step 625, the first available prior VM image is selected.
This data is retrieved from data store 560 with data store 560
having been loaded with problem data using the processing
previously executed and shown in FIG. 5. At step 630, a
memory area (memory area 635) is cleared or otherwise
initialized. At step 640 the first problem (problem signature
data) that was identified for the selected prior VM image is
selected and stored in memory area 635. A determination is
made as to whether there were other problems (problem sig-
nature data) detected for the selected prior VM image (deci-
sion 650). If there were additional problems detected, then
decision 650 branches to the “yes” branch which loops back
to select the next problem (problem signature data) and store
the next problem data into memory area 635. This looping
continues until all of the problems associated with the
selected prior VM image have been selected and stored in

10

15

20

25

30

35

40

45

50

55

60

65

10

memory area 635, at which point decision 650 branches to the
“no” branch for further processing.

At step 660, the problem data associated with the selected
prior VM image is qualitatively compared with the current
“best” available VM image problem data which was previ-
ously stored in memory area 620. A determination is made as
to whether the selected prior VM image is better than the
current “best” available VM image based on the comparison
(decision 670). If the selected prior VM image is better than
the current “best” available VM image, then decision 670
branches to the “yes” branch whereupon, at step 675, the
current “best” available VM image is replaced by clearing
memory area 620 and writing the selected prior VM image’s
identifier to memory area 620 along with the problem data
associated with the selected prior VM image from memory
area 635. On the other hand, if the selected prior VM image is
not better than the current “best” available VM image, then
decision 670 branches to the “no” branch bypassing step 675.

A determination is made as to whether there are additional
prior VM images that have yet to be processed (decision 680).
If there are additional prior VM images that have yet to be
processed, then decision 680 branches to the “yes” branch
which loops back to select the next prior VM image and
compare the image’s problem data to the “best” available
image. In this manner, the problem data corresponding to
each of the prior VM images is compared to the current “best”
available VM image in order to identify the VM image that
has problem data can be better managed than the problems
detected in other available VM images. This looping contin-
ues until the problem data associated with all of the available
VM images have been processed, at which point decision 680
branches to the “no” branch. At step 690, the “best” available
VM image, as stored in memory area 620, is applied to the
computer system. Of course, if the currently running VM
image is found to be the “best” available image, then none of
the prior VM images is applied to the system. Processing then
returns to the calling routine (see FIG. 4) at 695.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

While particular embodiments of the present invention
have been shown and described, it will be obvious to those
skilled in the art that, based upon the teachings herein, that
changes and modifications may be made without departing
from this invention and its broader aspects. Therefore, the
appended claims are to encompass within their scope all such
changes and modifications as are within the true spirit and
scope of this invention. Furthermore, it is to be understood
that the invention is solely defined by the appended claims. It
will be understood by those with skill in the art that if a

US 9,104,447 B2

11

specific number of an introduced claim element is intended,
such intent will be explicitly recited in the claim, and in the
absence of such recitation no such limitation is present. For
non-limiting example, as an aid to understanding, the follow-
ing appended claims contain usage of the introductory
phrases “at least one” and “one or more” to introduce claim
elements. However, the use of such phrases should not be
construed to imply that the introduction of a claim element by
the indefinite articles “a” or “an” limits any particular claim
containing such introduced claim element to inventions con-
taining only one such element, even when the same claim
includes the introductory phrases “one or more™ or “at least
one” and indefinite articles such as “a” or “an”; the same
holds true for the use in the claims of definite articles.

What is claimed is:

1. An information handling system comprising:

a plurality of processors;

a memory coupled to at least one of the processors;

a nonvolatile storage area; and

a set of instructions stored in the memory and executed by

at least one of the processors to apply a virtual machine

(VM) image to a computer system, wherein the set of

instructions perform actions of:

detecting that a current VM image executing on the
computer system is experiencing a problem;

analyzing one or more prior VM images utilizing one or
more resource metrics captured while the one or more
prior VM images were executing on the computer
system,

selecting one of the prior VM images based on the analy-
sis; and

replacing the current VM image with the selected prior
VM image.

2. The information handling system of claim 1 wherein the
set of instructions that perform the analysis perform addi-
tional actions comprising:

creating a current problem signature related to the problem

detected in the current VM image; and

comparing the current problem signature with historic

problem signatures that each correspond with one of the
prior VM images.

3. The information handling system of claim 2 wherein the
set of instructions perform additional actions comprising:

rejecting, based on the comparison, each of the prior VM

images with historic problem signatures matching the
current problem signature.

4. The information handling system of claim 2 wherein the
set of instructions perform additional actions comprising:

identifying, based on the comparison, a set of one or more

historic problem signatures that fail to match the current
problem signature, wherein the selected prior VM image
corresponds to a historic problem signature that is
included in the set of one or more historic problem
signatures.

5. The information handling system of claim 4 wherein the
set of instructions perform additional actions comprising:

comparing the set of one or more historic problem signa-

tures, wherein the comparison results in a selected his-
toric problem signature and wherein the selected prior
VM image corresponds to the selected historic problem
signature.

6. The information handling system of claim 4 wherein at
least one of the historic problem signatures are non-problem
signatures indicating that the corresponding prior VM images
are problem free.

10

15

20

25

30

35

40

45

50

55

60

12

7. The information handling system of claim 6 wherein the
selecting of one of the prior VM images further comprises:

identifying a prior VM image with a non-problem signa-

ture, wherein the identified prior VM image is selected
as the selected prior VM image.

8. The information handling system of claim 1 further
comprising:

analyzing the plurality of resource metrics corresponding

to each of the prior VM images, the analysis resulting in
the historic problem signatures corresponding to each of
the prior VM images.

9. The information handling system of claim 1 wherein the
analyzing and selecting are performed by a second computer
system that manages VM images for a plurality of computer
systems, including the computer system.

10. A computer program product stored in a non-transitory
computer readable medium, comprising computer instruc-
tions that, when executed by an information handling system,
applies a virtual machine (VM) image to a computer system
by causing the information handling system to perform
actions comprising:

detecting that a current VM image executing on the com-

puter system is experiencing a problem;

analyzing one or more prior VM images utilizing one or

more resource metrics captured while the one or more
prior VM images were executing on the computer sys-
tem;

selecting one of the prior VM images based on the analysis;

and

replacing the current VM image with the selected prior VM

image.

11. The computer program product of claim 10 wherein the
analysis further comprises:

creating a current problem signature related to the problem

detected in the current VM image; and

comparing the current problem signature with historic

problem signatures that each correspond with one of the
prior VM images.

12. The computer program product of claim 11 wherein the
actions further comprise:

rejecting, based on the comparison, each of the prior VM

images with historic problem signatures matching the
current problem signature.

13. The computer program product of claim 11 wherein the
actions further comprise:

identifying, based on the comparison, a set of one or more

historic problem signatures that fail to match the current
problem signature, wherein the selected prior VM image
corresponds to a historic problem signature that is
included in the set of one or more historic problem
signatures.

14. The computer program product of claim 13 wherein the
actions further comprise:

comparing the set of one or more historic problem signa-

tures, wherein the comparison results in a selected his-
toric problem signature and wherein the selected prior
VM image corresponds to the selected historic problem
signature.

15. The computer program product of claim 13 wherein at
least one of the historic problem signatures are non-problem
signatures indicating that the corresponding prior VM images
are problem free.

16. The computer program product of claim 15 wherein the
selecting of one of the prior VM images further comprises:

identifying a prior VM image with a non-problem signa-

ture, wherein the identified prior VM image is selected
as the selected prior VM image.

US 9,104,447 B2
13 14

17. The computer program product of claim 10 wherein the
actions further comprise:

analyzing the plurality of resource metrics corresponding

to each of the prior VM images, the analysis resulting in
the historic problem signatures corresponding to each of 5
the prior VM images.

18. The computer program product of claim 10 wherein the
analyzing and selecting are performed by a second computer
system that manages VM images for a plurality of computer
systems, including the computer system. 10

#* #* #* #* #*

